Sideband peak count-index technique for monitoring multiple cracks in plate structures using ordinary state-based peri-ultrasound theory

Author:

Zhang Guangdong1,Li Xiongbing1,Zhang Shuzeng1ORCID,Kundu Tribikram2

Affiliation:

1. School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan, 410075, China

2. Department of Civil and Architecture Engineering and Mechanics, University of Arizona, Tucson, Arizona 85721, USA

Abstract

This work presents a peri-ultrasound theory based on ordinary state-based peridynamics for modeling elastic waves propagating in three-dimensional (3-D) plate structures and interacting with multiple cracks. A recently developed nonlinear ultrasonic technique called sideband peak count-index (or SPC-I) is adopted for monitoring one or more cracks with thickness values equal to 0 mm (crack-free), 1, 2, and 4 mm. Three separate scenarios—one crack, two cracks, and four cracks in 3-D plate structures—are investigated. These cracks can be classified as thin and thick cracks depending on the horizon size, which is mentioned in peri-ultrasound theory. Computed results for all three cases show larger SPC-I values for thin cracks than for thick cracks and the case of no cracks. This observation is in line with the previously reported results in the literature and proves that the state-based peri-ultrasound theory can capture the expected nonlinear response of elastic waves interacting with multiple cracks without changing the cracks' surface locations artificially, and this is always needed in most of the other numerical methods. The proposed state-based peri-ultrasound theory is more flexible and reliable for solving 3-D problems, and the out-of-plane wave field can be obtained for engineering analysis.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3