Frequency dependence of sensitivity to interaural phase differences in pure tones

Author:

Klug Jonas1,Dietz Mathias1ORCID

Affiliation:

1. Department of Medical Physics and Acoustics, University of Oldenburg, 26129, Oldenburg, Germany

Abstract

It is well established that in normal-hearing humans, the threshold of interaural time differences for pure tones increases dramatically above about 1300 Hz, only to become unmeasurable above 1400 Hz. However, physiological data and auditory models suggest that the actual decline in sensitivity is more gradual and only appears to be abrupt because the maximum of the psychometric function dips below the threshold proportion correct, e.g., 0.794. Published data only report thresholds at certain proportions correct but not the decline of proportions correct or of the sensitivity index d′ with increasing frequencies. Here, we present pure-tone behavioral data obtained with a constant stimulus procedure. Seven of nine subjects showed proportions correct above 0.9 at 1300 Hz and virtually no sensitivity at 1500 Hz (proportion correct within 0.07 of chance level). This corresponds to a sensitivity decline of 46–78 dB/oct, much steeper than predicted by existing models or by the decline of phase locking of the auditory nerve fibers in animal data.

Funder

European Research Council

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3