Dynamics of a two-layer immiscible fluid system exposed to ultrasound

Author:

Hoque S. Z.1ORCID,Sen A. K.1ORCID

Affiliation:

1. Micro Nano Bio Fluidics Unit, Department of Mechanical Engineering, Indian Institute of Technology Madras , Chennai 600036, India

Abstract

The relocation dynamics of a two-layer immiscible fluid system exposed to bulk acoustic waves using simulations and experiments are reported. A theoretical formulation of the acoustic radiation pressure (ARP) acting on the interface reveals that ARP is a nonlinear function of the impedance contrast. It has been shown that the force acting on the interface is the simple sum of the ARP and the interfacial tension, which is dependent on the angle of the interface. It was discovered that although the acoustic radiation force is directed from high-impedance fluid (HIF) to low-impedance fluid (LIF), the final steady-state configuration depends on the wall-fluid contact angle (CA). Our study reveals that the HIF and LIF would relocate to the channel center for CA>110°, and CA<70°, respectively, while complete flipping of the fluids is observed for intermediate angles. The forces relocate the fluids in the channel, generally, by a clockwise or anticlockwise rotation. Here, it is demonstrated that the direction of this twist can be determined by the relative densities and wettabilities of the two fluids.

Funder

Department of Science & Technology

IIT Madras

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3