Pseudo-equivalent deterministic excitation method application for experimental reproduction of a structural response to a turbulent boundary layer excitation

Author:

Mazzeo G.1ORCID,Ichchou M.1,Petrone G.2ORCID,Bareille O.1ORCID,De Rosa S.2ORCID,Franco F.2

Affiliation:

1. LTDS—Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Écully 69130, France

2. PASTA LAB—Laboratory for Promoting Experiences in Aeronautical Structures and Acoustics, University of Naples “Federico II,” Naples 80125, Italy

Abstract

In the transportation engineering field, the turbulent boundary layer over a structure is one of the most relevant sources of structural vibration and emitted noise. Wind tunnels are still one of the best options for vibroacoustic experimental analyses for this specific problem. However, it is also true that this experimental method is not always affordable, due to several limitations—settings hard to control, time and money consumption, discrepancies among laboratories—that wind tunnel facilities present. It has already developed different methodologies to address this necessity, most of them based on the use of loudspeakers or shakers. In this work, an existing numerical method, called the pseudo-equivalent deterministic excitation method (PEDEM), is further developed for the experimental purpose of reproducing the experimental structural response of a panel subjected to a turbulent boundary layer (TBL) excitation, by using an equivalent rain-on-the-roof excitation instead; different formulations are used for the application of this approximated TBL excitation. The experimental application of PEDEM, here called X-PEDEM, is validated by comparison with experimental results of two different panels analysed in two different wind tunnel facilities.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3