Illustration of diffusion and equipartitioning as local processes: A numerical study using the scalar radiative transfer equation

Author:

Jaimes Manuel1ORCID,Snieder Roel1ORCID

Affiliation:

1. Center for Wave Phenomena, Colorado School of Mines , Golden, Colorado 80401, USA

Abstract

We study the transition from ballistic to diffusive to equipartitioned waves in scattering media using the acoustic radiative transfer equation. To solve this equation, we first transform it into an integral equation for the specific intensity and then construct a time stepping algorithm with which we evolve the specific intensity numerically in time. We handle the advection of energy analytically at the computational grid points and use numerical interpolation to deal with advection terms that do not lie on the grid points. This approach allows us to reduce the numerical dispersion, compared to standard numerical techniques. With this algorithm, we are able to model various initial conditions for the intensity field, non-isotropic scattering, and uniform scatterer density. We test this algorithm for an isotropic initial condition, isotropic scattering, and uniform scattering density, and find good agreement with analytical solutions. We compare our numerical solutions to known two-dimensional diffusion approximations and find good agreement. We use this algorithm to numerically investigate the transition from ballistic to diffusive to equipartitioned wave propagation over space and time, for two different initial conditions. The first one corresponds to an isotropic Gaussian distribution in space and the second one to a plane wave segment. We find that diffusion and equipartitioning must be treated as local rather than global concepts. This local behavior of equipartitioning has implications for Green's functions reconstruction, which is of interest in acoustics and seismology.

Funder

center for wave phenomena

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3