Source depth estimation with feature matching using convolutional neural networks in shallow water

Author:

Liu Mingda12,Niu Haiqiang12ORCID,Li Zhenglin34,Guo Yonggang12

Affiliation:

1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences 1 , Beijing, 100190, People's Republic of China

2. University of Chinese Academy of Sciences 2 , Beijing, 100049, People's Republic of China

3. School of Ocean Engineering and Technology, Sun Yat-sen University 3 , Zhuhai, 519000, People's Republic of China

4. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) 4 , Zhuhai, 519000, People's Republic of China

Abstract

A feature matching method based on the convolutional neural network (named FM-CNN), inspired from matched-field processing (MFP), is proposed to estimate source depth in shallow water. The FM-CNN, trained on the acoustic field replicas of a single source generated by an acoustic propagation model in a range-independent environment, is used to estimate single and multiple source depths in range-independent and mildly range-dependent environments. The performance of the FM-CNN is compared to the conventional MFP method. Sensitivity analysis for the two methods is performed to study the impact of different environmental mismatches (i.e., bottom parameters, water column sound speed profile, and topography) on depth estimation performance in the East China Sea environment. Simulation results demonstrate that the FM-CNN is more robust to the environmental mismatch in both single and multiple source depth estimation than the conventional MFP. The proposed FM-CNN is validated by real data collected from four tracks in the East China Sea experiment. Experimental results demonstrate that the FM-CNN is capable of reliably estimating single and multiple source depths in complex environments, while MFP has a large failure probability due to the presence of strong sidelobes and wide mainlobes.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3