Subwavelength Su-Schrieffer-Heeger topological modes in acoustic waveguides

Author:

Coutant Antonin1ORCID,Achilleos Vassos2ORCID,Richoux Olivier2ORCID,Theocharis Georgios2ORCID,Pagneux Vincent2ORCID

Affiliation:

1. Institut de Mathématiques de Bourgogne (IMB), UMR 5584, CNRS, Université de Bourgogne Franche-Comté, Dijon F-21000, France

2. Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique—Graduate School (IA-GS), CNRS, Avenue O. Messiaen, Le Mans Cedex 9 F-72085, France

Abstract

Topological systems furnish a powerful way of localizing wave energy at edges of a structured material. Usually, this relies on Bragg scattering to obtain bandgaps with nontrivial topological structures. However, this limits their applicability to low frequencies because that would require very large structures. A standard approach to address the problem is to add resonating elements inside the material to open gaps in the subwavelength regime. Unfortunately, generally, one has no precise control on the properties of the obtained topological modes, such as their frequency or localization length. In this work, a unique construction is proposed to couple acoustic resonators such that acoustic modes are mapped exactly to the eigenmodes of the Su-Schrieffer-Heeger (SSH) model. The relation between energy in the lattice model and the acoustic frequency is controlled by the characteristics of the resonators. In this way, SSH topological modes are obtained at any given frequency, for instance, in the subwavelength regime. The construction is also generalized to obtain well-controlled topological edge modes in alternative tunable configurations.

Funder

H2020 Marie Skłodowska-Curie Actions

Conseil Régional des Pays de la Loire

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference27 articles.

1. We refer the reader to Ref. 18, Sec. III for an extended discussion on boundary conditions. In particular, it is explained how H can be made Hermitian by a rescaling of pressure values.

2. Topological mechanics

3. Topological sound

4. Topological photonics

5. From the geometry of Foucault pendulum to the topology of planetary waves

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3