Influence of thermal deformations on sound absorption of three-dimensional printed metamaterials

Author:

Cingolani Matteo1ORCID,Fusaro Gioia1ORCID,Fratoni Giulia1ORCID,Garai Massimo1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy

Abstract

Acoustic metamaterials (AMMs) are designed with complex geometrical shapes to obtain unconventional sound-absorbing performances. As additive manufacturing is particularly suited to print complex structures in a more straightforward and controllable way, AMMs often exploit three-dimensional (3-D) printing techniques. However, when exposed to different temperature conditions, such structures can be affected by geometrical deformations, especially when they are polymer-based. This can cause a mismatch between the experimental data and the expected theoretical performance; therefore, it is important to take thermal effects into account. The present paper investigates the influence of thermal deformations on the sound absorption of three geometries: a coplanar spiral tube, a system with double coiled resonators, and a neck-embedded resonator. Measurements were performed on each 3-D printed specimen in the impedance tube after the samples had been placed in a climate chamber to modify the temperature settings (T = 10–50 °C). Numerical models, validated on the measurements, were employed to quantify the geometrical deformation of AMM structures through a multiphysics approach, highlighting the effects of thermal stress on the acoustic behavior. The main outcomes prove that the frequency shifts of sound absorption peaks depend on temperature configurations and follow exponential regressions, in accordance with previous literature on polymeric materials.

Funder

Ministero dell'Istruzione, dell'Università e della Ricerca

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3