The impact of head-related impulse response delay treatment strategy on psychoacoustic cue reconstruction errors from virtual loudspeaker arrays

Author:

Neal Matthew T.1ORCID,Zahorik Pavel1ORCID

Affiliation:

1. Department of Otolaryngology and Communicative Disorders, The University of Louisville, 117 East Kentucky Street, Louisville, Kentucky 40203, USA

Abstract

Known errors exist in loudspeaker array processing techniques, often degrading source localization and timbre. The goal of the present study was to use virtual loudspeaker arrays to investigate how treatment of the interaural time delay (ITD) cue from each loudspeaker impacts these errors. Virtual loudspeaker arrays rendered over headphones using head-related impulse responses (HRIRs) allow flexible control of array size. Here, three HRIR delay treatment strategies were evaluated using minimum-phase loudspeaker HRIRs: reapplying the original HRIR delays, applying the relative ITD to the contralateral ear, or separately applying the HRIR delays prior to virtual array processing. Seven array sizes were simulated, and panning techniques were used to estimate HRIRs from 3000 directions using higher-order Ambisonics, vector-base amplitude panning, and the closest loudspeaker technique. Compared to a traditional, physical array, the prior HRIR delay treatment strategy produced similar errors with a 95% reduction in the required array size. When compared to direct spherical harmonic (SH) fitting of head-related transfer functions (HRTFs), the prior delays strategy reduced errors in reconstruction accuracy of timbral and directional psychoacoustic cues. This result suggests that delay optimization can greatly reduce the number of virtual loudspeakers required for accurate rendering of acoustic scenes without SH-based HRTF representation.

Funder

Sonova, AG

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3