Difference between frequency and suppression tuning curves in a two-dimensional cochlear model

Author:

Murakami Yasuki1,Fuji Takumi2

Affiliation:

1. Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka 815-8540, Japan

2. Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka 808-0135, Japan,

Abstract

Suppression tuning curves (STCs) can be used to evaluate the cochlear frequency selectivity. However, the tip of the STC is located at a higher frequency than that of the frequency tuning curve (FTC) measured in the same preparation. Therefore, this study compares STCs from one-dimensional (1D) and two-dimensional (2D) cochlear models, which ignore and include short waves, respectively. The simulated STC tip is at a higher frequency than that of FTC in the 2D model, unlike the 1D model. The result suggests that short waves in the 2D model are responsible for the upward frequency of STC relative to FTC.

Funder

Japan Society for the Promotion of Science

Publisher

Acoustical Society of America (ASA)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3