Near-field acoustical holography and acoustic power analysis of a simulated, highly heated supersonic jet

Author:

Leete Kevin M.1ORCID,Gee Kent L.1ORCID,Liu Junhui2,Wall Alan T.3

Affiliation:

1. Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA

2. Naval Research Laboratory, Washington, DC, 20375, USA

3. Battlespace Acoustics Branch, 2610 Seventh Street, Building 441, Wright-Patterson AFB, Ohio 45433, USA

Abstract

Although near-field acoustical holography (NAH) and acoustic intensity analysis have previously been used to investigate the apparent jet noise sources produced by military aircraft, explicit connections to supersonic jet characteristics cannot be made due to a lack of information about the exhaust plume. To begin to bridge this gap and better understand the source information yielded by NAH, the current study instead applies NAH to a virtual measurement of the near-field pressures of a highly heated laboratory-scale supersonic jet generated by large-eddy simulation (LES). The holographic reconstructions of the pressure, particle velocity, and acoustic intensity are found to match the LES-generated acoustic field well and are used to calculate the acoustic power of the jet. The jet's calculated overall acoustic power is compared to the free-stream mechanical power, resulting in an acoustic efficiency of 1.5%. Ray-tracing of the acoustic intensity to the jet centerline generates an axial distribution of the acoustic power origin, showing that almost all the power originates from the supersonic portion of the flow and with the distribution peak upstream of the potential core tip. Holographic reconstruction of the pressures along the nozzle lipline captures the general spectral shape of the LES-generated pressures, though it underestimates the amplitude.

Funder

Office of Naval Research

Air Force Research Laboratory

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3