Assessing accuracy of resonances obtained with reassigned spectrograms from the “ground truth” of physical vocal tract models

Author:

Shadle Christine H.1,Fulop Sean A.2,Chen Wei-Rong1,Whalen D. H.1

Affiliation:

1. Yale Child Study Center, School of Medicine, Yale University 1 , New Haven, Connecticut 06511, USA

2. Department of Linguistics, Fresno State University 2 , Fresno, California 93740, USA

Abstract

The reassigned spectrogram (RS) has emerged as the most accurate way to infer vocal tract resonances from the acoustic signal [Shadle, Nam, and Whalen (2016). “Comparing measurement errors for formants in synthetic and natural vowels,” J. Acoust. Soc. Am. 139(2), 713–727]. To date, validating its accuracy has depended on formant synthesis for ground truth values of these resonances. Synthesis is easily controlled, but it has many intrinsic assumptions that do not necessarily accurately realize the acoustics in the way that physical resonances would. Here, we show that physical models of the vocal tract with derivable resonance values allow a separate approach to the ground truth, with a different range of limitations. Our three-dimensional printed vocal tract models were excited by white noise, allowing an accurate determination of the resonance frequencies. Then, sources with a range of fundamental frequencies were implemented, allowing a direct assessment of whether RS avoided the systematic bias towards the nearest strong harmonic to which other analysis techniques are prone. RS was indeed accurate at fundamental frequencies up to 300 Hz; above that, accuracy was somewhat reduced. Future directions include testing mechanical models with the dimensions of children's vocal tracts and making RS more broadly useful by automating the detection of resonances.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3