Performance of low-frequency sound zones with very fast room impulse response measurements

Author:

Cadavid José1ORCID,Møller Martin Bo2ORCID,Pedersen Christian Sejer1ORCID,Bech Søren12ORCID,van Waterschoot Toon3ORCID,Østergaard Jan1ORCID

Affiliation:

1. Department of Electronic Systems, Aalborg University 1 , Aalborg, 9000, Denmark

2. Bang & Olufsen A/S 2 , Struer, 7600, Denmark

3. Department of Electrical Engineering (ESAT), KU Leuven 3 , Leuven, 3001, Belgium

Abstract

Sound zone methods aim to control the sound field produced by an array of loudspeakers to render a given audio content in specific areas while making it almost inaudible in others. At low frequencies, control filters are based on information of the electro-acoustical path between loudspeakers and listening areas, contained in the room impulse responses (RIRs). This information can be acquired wirelessly through ubiquitous networks of microphones. In that case and for real-time applications in general, short acquisition and processing times are critical. In addition, limiting the amount of data that should be retrieved and processed can also reduce computational demands. Furthermore, such a framework would enable fast adaptation of control filters in changing acoustic environments. This work explores reducing the amount of time and information required to compute control filters when rendering and updating low-frequency sound zones. Using real RIR measurements, it is demonstrated that in some standard acoustic rooms, acquisition times on the order of a few hundred milliseconds are sufficient for accurately rendering sound zones. Moreover, an additional amount of information can be removed from the acquired RIRs without degrading the performance.

Funder

H2020 Marie Skłodowska-Curie Actions

European Research Council

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3