Recovery of spatially varying acoustical properties via automated partial differential equation identification

Author:

Liu Ruixian1ORCID,Gerstoft Peter2ORCID,Bianco Michael J2ORCID,Rao Bhaskar D.1

Affiliation:

1. Department of Electrical and Computer Engineering, University of California 1 , San Diego, California 92161, USA

2. Scripps Institution of Oceanography, University of California 2 , San Diego, California 92037, USA

Abstract

Observable dynamics, such as waves propagating on a surface, are generally governed by partial differential equations (PDEs), which are determined by the physical properties of the propagation media. The spatial variations of these properties lead to spatially dependent PDEs. It is useful in many fields to recover the variations from the observations of dynamical behaviors on the material. A method is proposed to form a map of the physical properties' spatial variations for a material via data-driven spatially dependent PDE identification and applied to recover acoustical properties (viscosity, attenuation, and phase speeds) for propagating waves. The proposed data-driven PDE identification scheme is based on ℓ1-norm minimization. It does not require any PDE term that is assumed active from the prior knowledge and is the first approach that is capable of identifying spatially dependent PDEs from measurements of phenomena. In addition, the method is efficient as a result of its non-iterative nature and can be robust against noise if used with an integration transformation technique. It is demonstrated in multiple experimental settings, including real laser measurements of a vibrating aluminum plate. Codes and data are available online at https://tinyurl.com/4wza8vxs.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep-Learning-based Spatial Acoustic Properties Recovery from Incomplete Signals;2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM);2024-07-08

2. Spatial acoustic properties recovery with deep learning;The Journal of the Acoustical Society of America;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3