Wave equations for porous media described by the Biot model

Author:

Chandrasekaran Sri Nivas1ORCID,Näsholm Sven Peter1ORCID,Holm Sverre2ORCID

Affiliation:

1. Department of Informatics, University of Oslo, P.O. Box 1080, Oslo, 0316, Norway

2. Department of Physics, University of Oslo, P.O. Box 1048, Oslo, 0316, Norway

Abstract

Single-mode equivalent space-time representations of the acoustic wave propagating in a Biot poroelastic medium have previously been found only for asymptotic cases: In the low frequency regime, where the viscous skin depth is greater than the characteristic pore size, the time domain equivalent is represented with integer order temporal and spatial loss terms, whereas in the high frequency regime, it is represented with fractional order temporal and spatial loss terms. In the current work, a time domain representation in terms of a partial differential equation is proposed for all three wave solutions of the Biot model across all frequencies, and it is derived from the material response function of the Biot poroelastic medium with suitable approximations for the compressional modes and the dynamic permeability. The dynamic permeability in the time domain is represented by a fractional pseudo-differential operator. Optimal correction factors are introduced into the wave equation to compensate for the discrepancies in the compressional wave dispersion and attenuation. Additionally, the method for incorporating the squirt flow mechanism into the wave equation via the Extended Biot poroviscoelastic model is described. The proposed wave equation has a physical basis and satisfies the passivity criterion.

Funder

Research Council of Norway

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3