Femoral neck phantom imaging using time-domain topological energy method

Author:

Rosa Paulo Tadeu C. R.1,Fontes-Pereira Aldo José2,Grimal Quentin3,Pereira Wagner Coelho de Albuquerque1

Affiliation:

1. Laboratório de Ultrassom, Programa de Engenharia Biomédica–COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, Brazil

2. Centro Universitário Serra dos Órgãos–Unifeso, Teresópolis, Rio de Janeiro 25976-345, Brazil

3. Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris 75006, France

Abstract

Ultrasonic bone imaging is a complex task, primarily because of the low energy contained in the signals reflected from the internal bone structures. In this study, the reconstruction of a bone-mimicking phantom echographic image using time-domain topological energy (TDTE) is proposed. A TDTE image results from a combination of forward and adjoint fields. The first is a solution of a numerical model that reproduces the setup of the experimental data acquisition to the best extent possible. The second has similar characteristics, but the source term is the time-reversed residue between the forward field and signals obtained from the experiment. The acquisition-reconstruction system used a linear phased-array transducer with a 5 MHz center frequency to acquire the signals and was coupled with a k-wave toolbox to implement the numerical models and perform the image reconstruction. The results showed good agreement between the geometry of the real phantom and the ultrasonic images. However, thickness evaluation errors were observed, which may be due to incorrect assumptions about the velocity models throughout the medium, a priori assumed to be known. Thus, this method has shown promising results and should be applied to the real femoral neck as a long-term objective.

Funder

cnpq

capes

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3