Snapshot-deficient active target localization in beam-time domain using multi-frequency expectation-maximization algorithm

Author:

Wang He1,Zhang Ting1ORCID,Cheng Lei1ORCID,Zhao Hangfang1ORCID

Affiliation:

1. College of Information Science and Electronic Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, China

Abstract

The two-dimensional (2D) active target localization is generally hindered by the high temporal and spatial sidelobe levels in snapshot-deficient scenarios, where the adaptive approaches undergo performance degeneration since they require many snapshots to build the sample covariance matrix. Aiming at working robustly in snapshot-deficient active scenarios, a 2D expectation-maximization-based vertical-time-record (EMVTR) approach is proposed to compensate for the snapshot deficiency and achieve the high-resolution active localization by reconstructing the covariance matrix using estimated hyperparameters, i.e., signal powers and noise variance. With the short-time Fourier transform, the proposed approach could reduce echoes' temporal correlation and attain robust beam-time localization in mild reverberation. The multi-frequency EMVTR is derived from the single-frequency case to improve the weak echo localization. The performance is evaluated by considering single and multiple target echoes in simulation and a single moving target with tank experimental data. The results manifest the proposed EMVTR's robustness and effectiveness for the 2D active localization in snapshot-deficient scenarios.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Verification of the Knowledge-Aided Approach for Active Target Localization in Reverberant Environments;2023 International Conference on Wireless Communications and Signal Processing (WCSP);2023-11-02

2. Improved snapshot-deficient active target localization using the knowledge-aided covariance of reverberation;JASA Express Letters;2023-09-01

3. Physics based sparsity level determination for acoustic scattered far-field prediction;JASA Express Letters;2023-06-01

4. Research on the Application of Trade Gravity Model in the National Bilateral Export Trade;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

5. Multipath Time-Delay Estimation With Impulsive Noise via Bayesian Compressive Sensing;IEEE Signal Processing Letters;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3