An experimental investigation of aerodynamic and aeroacoustic performance of a wind turbine airfoil with trailing edge serrations

Author:

Cao Huijing1,Zhou Teng1ORCID,Zhang Yinan1,Zhang Mingming2

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

Trailing edge (TE) serrations are widely used as an effective passive control method to reduce the turbulent TE noise from wind turbine blades. Other than the acoustic effects, the aerodynamic performance of serrations is also an important issue that should be considered, since it determines the power output of the blade. To this end, the far-field sound pressure level, flow field, and aerodynamic force of the serrated airfoil were measured in an anechoic wind tunnel, and the lift increase and noise reduction effects of the TE serrations were comprehensively evaluated. The result showed that the presence of TE serrations could achieve noise reduction by about 2 dB at the low-to-moderate frequency range at small angles of attack, and meanwhile it could suppress the fluctuation of aerodynamic forces. In addition, the proper orthogonal decomposition method was deployed to decompose the wake flow into various vortex structures with different portions of turbulent kinetic energy so as to reveal the noise reduction mechanism of the serrated TE. The result suggested that TE serrations could effectively inhibit large-scale vortex structures that shed from the boundary layer on the suction side, thereby achieving noise reduction around the vortex shedding frequency.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Science

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3