Acoustic modal analysis of room responses from the perspective of state-space balanced realization with application to field interpolation

Author:

Jian Hung-Ming1,Chen You-Siang1,Bai Mingsian R.1ORCID

Affiliation:

1. Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

Abstract

Despite its importance in structural dynamics and vibration, modal analysis is rarely performed in acoustics due to the high modal density of sound fields. A novel acoustic modal analysis (AMA) approach is proposed in this paper for enclosed acoustic fields, such as a room, from the perspective of state-space formulation of control systems. A single-input-multiple-output (SIMO) state-space model is established in light of the balanced realization (BR), given impulse response measurements. The BR model is then converted to a modal form such that the modal parameters, including natural frequencies, damping ratios, and mode shapes, can be estimated. To reconstruct mode shapes, plane wave decomposition (PWD) and compressive sensing (CS) techniques are exploited to solve the underdetermined problem for a spatially sparse representation of mode shapes under the Schroeder frequency. As a result, a model of a continuous system can be “interpolated” for any arbitrary source-receiver positions on the basis of the estimated mode shapes. With the identified modal parameters, the low-frequency and early reflection part of room impulse responses (RIRs) can be synthesized for arbitrary source-sensor pairs. The proposed AMA acoustic field interpolation is validated by extensive simulations and experiments.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference32 articles.

1. Experimental modal analysis technique for three‐dimensional acoustic cavities

2. A hybrid modal analysis for enclosed sound fields

3. Room acoustic modal analysis using Bayesian inference

4. Sound field reconstruction in rooms: Inpainting meets super-resolution

5. M. S. Kristoffersen , M. B. Møller , P. Martínez-Nuevo , and J. Østergaard , “ Deep sound field reconstruction in real rooms: Introducing the ISOBEL sound field dataset,” arXiv:2102.06455 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3