Real-time acoustic observations in the Canadian Arctic Archipelago

Author:

Cook Emmanuelle D.1,Barclay David R.1,Richards Clark G.2

Affiliation:

1. Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada

2. Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, Nova Scotia, B2Y 4A2, Canada

Abstract

The main sources of noise in the Arctic Ocean are naturally occurring, rather than related to human activities. Sustained acoustic monitoring at high latitudes provides quantitative measures of changes in the sound field attributable to evolving human activity or shifting environmental conditions. A 12-month ambient sound time series (September 2018 to August 2019) recorded and transmitted from a real-time monitoring station near Gascoyne Inlet, Nunavut is presented. During this time, sound levels in the band 16–6400 Hz ranged between 10 and 135 dB re 1  μPa2/Hz. The average monthly sound levels follow seasonal ice variations with a dependence on the timing of ice melt and freeze-up and with higher frequencies varying more strongly than the lower frequencies. Ambient sound levels are higher in the summer during open water and quietest in the winter during periods of pack ice and shore fast ice. An autocorrelation of monthly noise levels over the ice freeze-up and complete cover periods reveal a ∼24 h periodic trend in noise power at high frequencies (>1000 Hz) caused by tidally driven surface currents in combination with increased ice block collisions or increased stress in the shore fast sea ice.

Funder

Ocean Frontiers Institute

Natural Sciences and Engineering Research Council of Canada

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3