Wave propagation across the skull under bone conduction: Dependence on coupling methods

Author:

Farahmandi Tahmine S.1ORCID,Dobrev Ivo1,Kim Namkeun2,Lim Jongwoo2,Pfiffner Flurin1,Huber Alexander M.1,Röösli Christof1

Affiliation:

1. Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091 Zürich, Switzerland

2. Department of Mechanical Engineering, Incheon National University, 119 Academy-ro, Songdo 1(il)-dong, Yeonsu-gu, Incheon, Republic of Korea

Abstract

This study is aimed at the quantitative investigation of wave propagation through the skull bone and its dependence on different coupling methods of the bone conduction hearing aid (BCHA). Experiments were conducted on five Thiel embalmed whole head cadaver specimens. An electromagnetic actuator from a commercial BCHA was mounted on a 5-Newton steel headband, at the mastoid, on a percutaneously implanted screw (Baha® Connect), and transcutaneously with a Baha® Attract (Cochlear Limited, Sydney, Australia), at the clinical bone anchored hearing aid (BAHA) location. Surface motion was quantified by sequentially measuring ∼200 points on the skull surface via a three-dimensional laser Doppler vibrometer (3D LDV) system. The experimental procedure was repeated virtually, using a modified LiUHead finite element model (FEM). Both experiential and FEM methods showed an onset of deformations; first near the stimulation area, at 250–500 Hz, which then extended to the inferior ipsilateral skull surface, at 0.5–2 kHz, and spread across the whole skull above 3–4 kHz. Overall, stiffer coupling (Connect versus Headband), applied at a location with lower mechanical stiffness (the BAHA location versus mastoid), led to a faster transition and lower transition frequency to local deformations and wave motion. This behaviour was more evident at the BAHA location, as the mastoid was more agnostic to coupling condition.

Funder

national research foundation of korea

schweizerischer nationalfonds zur förderung der wissenschaftlichen forschung

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3