Statistically robust estimation of source bearing via minimizing the Bhattacharyya distance

Author:

Ma Qian1,Xu Wen2,Zhou Yue1

Affiliation:

1. School of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

2. Zhejiang Provincial Key Laboratory of Ocean Observation-Imaging Testbed, Ocean College, Zhoushan 316021, China

Abstract

Source bearing estimation is a common technique in acoustic array processing. Many methods have been developed and most of them exploit some underlying statistical model. When applied to a practical system, the robustness to model mismatch is of major concern. Traditional adaptive methods, such as the minimum power distortionless response processor, are notoriously known for their sensitivity to model mismatch. In this paper, a parameter estimator is developed via the minimum Bhattacharyya distance estimator (MBDE), which provides a measure of the divergence between the assumed and true probability distributions and is, thus, capable of statistically matching. Under a Gaussian random signal model typical of source bearing estimation, the MBDE is derived in terms of the data-based and modeled covariance matrices without involving matrix inversion. The performance of the MBDE, regarding the robustness and resolution, is analyzed in comparison with some of the existing methods. A connection with the Weiss-Weinstein bound is also discussed, which gives the MBDE an interpretation of closely approaching a large-error performance bound. Theoretical analysis and simulations of bearing estimation using a uniform linear array show that the proposed method owns a considerable resolution comparable to an adaptive method while being robust against statistical mismatch, including covariance mismatch caused by snapshot deficiency and/or noise model mismatch.

Funder

National Natural Science Foundation of China

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3