Affiliation:
1. Department of Instrumentation and Applied Physics, Indian Institute of Science, C. V. Raman Avenue, Bengaluru 560 012, India
Abstract
Frequency domain photoacoustic tomography is becoming more attractive due to low-cost and compact light-sources being used; however, frequency-domain implementation suffers from lower signal to noise compared to time-domain implementation. In this work, we have developed a non-quadratic based penalization framework for frequency-domain photoacoustic imaging, and further proposed a two-step model-resolution matrix based deconvolution approach to improve the reconstruction image quality. The model-resolution matrix was developed in the context of different penalty functions like l2-norm, l1-norm, Cauchy, and Geman-McClure. These model-resolution matrices were then used to perform the deconvolution operation using split augmented Lagrangian shrinkage thresholding algorithm in both full-view and limited-view configurations. The results indicated that the two-step approach outperformed the different penalty function (prior constraint) based reconstruction, with an improvement of about 20% in terms of peak signal to noise ratio and 30% in terms of structural similarity index measure. The improved image quality provided using these algorithms will have a direct impact on realizing practical frequency-domain implementation in both limited-view and full-view configurations.
Funder
Department of Biotechnology, Ministry of Science and Technology
Science and Engineering Research Board, Department of Science and Technology, India
Indian Institute of Science
Publisher
Acoustical Society of America (ASA)
Subject
Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献