A lumped parameter model of the longitudinal NiMnGa transducer based on piezomagnetic equations

Author:

Lan Yu1ORCID,Wang Houqi1ORCID,Lu Wei1ORCID,Sun Hao1ORCID

Affiliation:

1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China

Abstract

The NiMnGa alloy is a typical magnetic shape memory alloy with up to 6% immense strain, high energy density, and low effective elastic modulus. These comprehensive characteristics make it possible to realize a low-frequency underwater acoustic transducer. To describe the field-induced dynamic strain, an equivalent circuit model (ECM) of a longitudinal NiMnGa transducer is presented as a lumped parameter model, which couples magnetics, mechanics, and acoustics. In this paper, we focus on the piezomagnetic equations as the constitutive relationship of the NiMnGa element with a dynamic magnetic field. Furthermore, combined with the dynamic kinetic equation, the equivalent circuit is derived, and it has the advantage of containing acoustical terminals. The proposed model can predict the resonance frequency, effective stiffness, and input impedance of the NiMnGa transducer. Finally, a finite element model (FEM) is developed to verify the lumped parameter model. The results indicate that the spring's stiffness increases the resonance frequency, while the mass load is on the contrary, and they both agree well with the results of ECM. In addition, the FEM and ECM can also predict the dynamic responses, which provide a guideline for the design of longitudinal NiMnGa transducers.

Funder

National Natural Science Foundation of China

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3