Homogenization of an acoustic coating with a steel backing subject to an obliquely incident sound

Author:

Liu Jiawei1,Yang Haibin1,Zhao Honggang1ORCID,Wang Yang1,Yu Dianlong1ORCID,Wen Jihong1ORCID

Affiliation:

1. Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

An effective homogenization model for the acoustic coating of underwater structures is important for reducing the complexity of acoustic scattering computation, which arises from the huge difference in scale between the integral structure and the inhomogeneous microstructure of the coating. The main difficulty of this homogenization arises from the oblique-incidence effect of external sound waves and the interface effect between the coating and backing. In this work, a hybrid method, combining the Bloch wave analysis and retrieval technique, is proposed to characterize the acoustic behavior of the voided coating backed with a steel plate under the action of external sound waves with an arbitrary incident angle. The effectiveness of this method is validated by numerical simulations and comparison with the Bloch wave method and the traditional retrieval method. The influence of the shear-wave effect under obliquely incident sound waves and the coupling effect between the coating and the backing on the homogenization model is investigated in detail, providing a comprehensive understanding of the effective acoustic behavior of the coating.

Funder

the science and technology innovation Program of Hunan Province

National Natural Science Foundation of China

the Graduate Science Innovation Program of Hunan Province

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3