Automated extraction of baleen whale calls based on the pseudo-Wigner–Ville distribution

Author:

Pu Wangyi1ORCID,Liu Songzuo1,Qing Xin1ORCID,Qiao Gang1,Mazhar Suleman1,Ma Tianlong1

Affiliation:

1. Acoustic Science and Technology Laboratory, Harbin Engineering University , Harbin 150001, China

Abstract

Baleen whales produce a wide variety of frequency-modulated calls. Extraction of the time–frequency (TF) structures of these calls forms the basis for many applications, including abundance estimation and species recognition. Typical methods to extract the contours of whale calls from a spectrogram are based on the short-time Fourier transform and are, thus, restricted by a fixed TF resolution. Considering the low-frequency nature of baleen whale calls, this work represents the contours using a pseudo-Wigner–Ville distribution for a higher TF resolution at the cost of introducing cross terms. An adaptive threshold is proposed followed by a modified Gaussian mixture probability hypothesis density filter to extract the contours. Finally, the artificial contours, which are caused by the cross terms, can be removed in post-processing. Simulations were conducted to explore how the signal-to-noise ratio influences the performance of the proposed method. Then, in experiments based on real data, the contours of the calls of three kinds of baleen whales were extracted in a highly accurate manner (with mean deviations of 5.4 and 0.051 Hz from the ground-truth contours at sampling rates of 4000 and 100 Hz, respectively) with a recall of 75% and a precision of 78.5%.

Funder

National Natural Science Foundation of China

the Open Foundation of Key Laboratory of Underwater Acoustic Countermeasure Technology

National Science Foundation of Heilongjiang Province, China

Young Elite Scientists Sponsorship Program by CAST

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3