Temporary noise-induced underwater hearing loss in an aquatic turtle (Trachemys scripta elegans)

Author:

Salas Andria K.1ORCID,Capuano Alyssa M.1,Harms Craig A.2,Piniak Wendy E. D.3,Mooney T. Aran1ORCID

Affiliation:

1. Biology Department, Woods Hole Oceanographic Institution, Woods Hole 1 , Massachusetts 02543, USA

2. Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University 2 , Morehead City, North Carolina 28557, USA

3. Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration 3 , Beaufort, North Carolina 28516, USA

Abstract

Noise pollution in aquatic environments can cause hearing loss in noise-exposed animals. We investigated whether exposure to continuous underwater white noise (50–1000 Hz) affects the auditory sensitivity of an aquatic turtle Trachemys scripta elegans (red-eared slider) across 16 noise conditions of differing durations and amplitudes. Sound exposure levels (SELs) ranged between 155 and 193 dB re 1 μPa2 s, and auditory sensitivity was measured at 400 Hz using auditory evoked potential methods. Comparing control and post-exposure thresholds revealed temporary threshold shifts (TTS) in all three individuals, with at least two of the three turtles experiencing TTS at all but the two lowest SELs tested, and shifts up to 40 dB. There were significant positive relationships between shift magnitude and exposure duration, amplitude, and SEL. The mean predicted TTS onset was 160 dB re 1 μPa2 s. There was individual variation in susceptibility to TTS, threshold shift magnitude, and recovery rate, which was non-monotonic and occurred on time scales ranging from < 1 h to > 2 days post-exposure. Recovery rates were generally greater after higher magnitude shifts. Sound levels inducing hearing loss were comparatively low, suggesting aquatic turtles may be more sensitive to underwater noise than previously considered.

Funder

U.S. Navy

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3