The sound production of Aplodinotus grunniens in the presence of boat sounds

Author:

Somogyi Nicholas A.1ORCID,Rountree Rodney A.2ORCID

Affiliation:

1. Department of Fish and Wildlife Science, Oregon State University 1 , Corvallis, Oregon 97331, USA

2. Department of Biology, University of Victoria 2 , Victoria, British Columbia, V8P 5C2, Canada

Abstract

Archived soundscape data from Lake Champlain, New York, were used to examine the effect of anthropogenic sounds produced by recreational boating on freshwater drum (Aplodinotus grunniens) soniferous behavior. Drum progressed from sporadic calling during the day to calls that increasingly overlapped culminating in a chorus in the late afternoon and evening. The response of drum to boat noise appeared to differ among these states, perhaps reflecting differences in the underlying behaviors. In response to boat noise, freshwater drum spawning choruses occurred later in the day, thus avoiding the noisiest periods. The peak frequency and knock rate of calls also increased in the presence of boat noise. Of the acoustical adjustments observed, the most strongly shown were those which increased the likelihood of signal reception, suggesting a Lombard effect response. Therefore, these data suggest freshwater drum have plasticity in their acoustical behavior, potentially shifting chorusing time, and altering sound characteristics to optimize communication in the presence of anthropogenic noise. However, additional work is needed to further clarify the response of freshwater drum to anthropogenic noise.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the special issue on fish bioacoustics: Hearing and sound communication;The Journal of the Acoustical Society of America;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3