Cluster-aware channel estimation with deep learning method in deep-water acoustic communications

Author:

Wang Diya1,Zhang Yonglin1ORCID,Tai Yupeng1,Wu Lixin1,Wang Haibin1,Wang Jun1,Luo Wenyu1,Meriaudeau Fabrice2,Yang Fan3

Affiliation:

1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences 1 , Beijing, 100190, China

2. Institut de Chimie Moléculaire, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6302, University of Burgundy 2 , 21078 Dijon, France

3. Laboratoire Interdisciplinaire Carnot de Bourgogne, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6303, University of Burgundy 3 , 21078 Dijon, France

Abstract

In underwater acoustic (UWA) communications, channels often exhibit a clustered-sparse structure, wherein most of the channel impulse responses are near zero, and only a small number of nonzero taps assemble to form clusters. Several algorithms have used the time-domain sparse characteristic of UWA channels to reduce the complexity of channel estimation and improve the accuracy. Employing the clustered structure to enhance channel estimation performance provides another promising research direction. In this work, a deep learning-based channel estimation method for UWA orthogonal frequency division multiplexing (OFDM) systems is proposed that leverages the clustered structure information. First, a cluster detection model based on convolutional neural networks is introduced to detect the cluster of UWA channels. This method outperforms the traditional Page test algorithm with better accuracy and robustness, particularly in low signal-to-noise ratio conditions. Based on the cluster detection model, a cluster-aware distributed compressed sensing channel estimation method is proposed, which reduces the noise-induced errors by exploiting the joint sparsity between adjacent OFDM symbols and limiting the search space of channel delay spread. Numerical simulation and sea trial results are provided to illustrate the superior performance of the proposed approach in comparison with existing sparse UWA channel estimation methods.

Funder

China Scholarship Council

CAS Specific Research Assistant Funding Program

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference34 articles.

1. Underwater acoustic communication channels: Propagation models and statistical characterization;IEEE Commun. Mag.,2009

2. Underwater acoustic communication and the general performance evaluation criteria;Front. Inf. Technol. Electron. Eng.,2018

3. An eigenpath underwater acoustic communication channel simulation,2005

4. Clustered adaptation for estimation of time-varying underwater acoustic channels;IEEE Trans. Signal Process.,2012

5. Per-cluster-prediction based sparse channel estimation for multicarrier underwater acoustic communications,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3