Bayesian optimization with Gaussian process surrogate model for source localization

Author:

Jenkins William F.1ORCID,Gerstoft Peter1ORCID,Park Yongsung1ORCID

Affiliation:

1. Scripps Institution of Oceanography, University of California San Diego , La Jolla, California 92093, USA

Abstract

Source localization with a geoacoustic model requires optimizing the model over a parameter space of range and depth with the objective of matching a predicted sound field to a field measured on an array. We propose a sample-efficient sequential Bayesian optimization strategy that models the objective function as a Gaussian process (GP) surrogate model conditioned on observed data. Using the mean and covariance functions of the GP, a heuristic acquisition function proposes a candidate in parameter space to sample, balancing exploitation (sampling around the best observed objective function value) and exploration (sampling in regions of high variance in the GP). The candidate sample is evaluated, and the GP conditioned on the updated data. Optimization proceeds sequentially until a fixed budget of evaluations is expended. We demonstrate source localization for a shallow-water waveguide using Monte Carlo simulations and experimental data from an acoustic source tow. Compared to grid search and quasi-random sampling strategies, simulations and experimental results indicate the Bayesian optimization strategy converges on optimal solutions rapidly.

Funder

National Defense Science and Engineering Graduate

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference64 articles.

1. Gaussian processes for sound field reconstruction;J. Acoust. Soc. Am.,2021

2. Matched field source localization with Gaussian processes;JASA Express Lett.,2021

3. Inversion in an uncertain ocean using Gaussian processes;J. Acoust. Soc. Am.,2023

4. Direction-of-arrival estimation using Gaussian process interpolation,2023

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geoacoustic inversion using Bayesian optimization with a Gaussian process surrogate model;The Journal of the Acoustical Society of America;2024-08-01

2. The Bayesian Optimization of CNN Hyperparameters Based on Multi-Threaded Gaussian Process Acceleration;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

3. Bayesian Optimization with Gaussian Processes for Robust Localization;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. A lucky covariance estimator based on cumulative coherence;The Journal of the Acoustical Society of America;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3