Observations and simulations of caustic formation due to oceanographic fine structure

Author:

DeFilippis Jacob P.1,Cornuelle Bruce D.1ORCID,Lucas Andrew J.1,Hodgkiss William S.1,Lenain Luc1,Kuperman W. A.1ORCID,Alford Matthew H.1

Affiliation:

1. Scripps Institution of Oceanography, University of California at San Diego , La Jolla, California 92093, USA

Abstract

An at-sea experiment in deep water was conducted to explore the impact of small-scale sound-speed variability on mid-frequency (1–10 kHz) acoustic propagation. Short-range (1–5 km) acoustic transmissions were sent through the upper ocean (0–200 m) while oceanographic instruments simultaneously measured the ocean environment within 2 km of the single upper turning points of the acoustic transmissions. During these transmissions, acoustic receptions over a 7.875 m vertical line array show closely spaced, sometimes interfering arrivals. Ray and full-wave simulations of the transmissions using nearby sound-speed profiles are compared deterministically to the received acoustic signals. The sensitivity of the acoustic arrivals to the vertical scales of ocean sound speed is tested by comparing the observed and simulated arrival intensity where the sound-speed profile used by the simulation is smoothed to varying scales. Observations and modeling both suggest that vertical fine-scale structures (1–10 m) embedded in the sound-speed profile have strong second derivatives which allow for the formation of acoustic caustics as well as potentially interfering acoustic propagation multipaths.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3