Generative models based on eigendecomposition for dense ray tracing

Author:

Ramos Oliveira Jorge A.1ORCID,Castelan Mario1ORCID,Baltazar Arturo1ORCID

Affiliation:

1. Robotica y Manufactura Avanzada, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ramos Arizpe, Coahuila 25900, Mexico

Abstract

In this work, we present an algorithm capable of emulating ray trajectories that obey the least action principle. The method is based on spectral decomposition of geometric shapes taken from a set of raypaths. As the proposed work relies on shape analysis, it is agnostic on the underlying physics of raypath generation. As such, it is independent of the ray tracing method used to generate the training paths. In cases of mildly heterogeneous media or scenarios with a limited number of geometrical scatters, we show that the algorithm is capable of efficiently populating a given scenario with a dense array of emulated rays whose trajectories are in close agreement with actual rays. We argue that the algorithm also serves as an effective method capable of detecting regions where ray variation is high, such as when possible shadow zones are present.

Funder

Tecnológico Nacional de México

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3