Nonintrusive wind blade fault detection using a deep learning approach by exploring acoustic information

Author:

Liu Hongqing1ORCID,Zhu Wenbin1,Zhou Yi1,Shi Liming1,Gan Lu2

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications 1 , Chongqing, China

2. College of Engineering, Design and Physical Science, Brunel University 2 , London UB8 3PH, United Kingdom

Abstract

Various physical characteristics, including ultrasonic waves, active acoustic emissions, vibrations, and thermal imaging, have been used for blade fault detection. In this work, we propose using the sound produced by spinning wind blades to identify faults. To the best of our knowledge, passive acoustic information has not yet been explored for this task. In particular, we develop three networks targeting different scenarios. The main contributions of this work are threefold. First, when normal and aberrant data are available for supervised learning, an attention-convolutional recurrent neural network is designed to show the feasibility of using passive sound information to conduct fault detection. Second, in the absence of abnormal training data, we build a normal-encoder network to learn the distributions of normal data through semisupervised learning, which avoids the requirement of abnormal training data. Third, when multiple devices are used to collect the data, due to different properties of devices, there is a domain mismatch issue. To overcome this, we create an adversarial domain adaptive network to close the gap between the source and target domains. Acoustic signal datasets of actual wind turbine operations are collected to evaluate our fault detection systems. The findings demonstrate that the proposed systems offer high classification accuracy and indicate the feasibility of passive acoustic signal-based wind turbine blade fault detection with one step close to automatic detection.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3