Predicting ocean pressure field with a physics-informed neural network

Author:

Yoon Seunghyun12,Park Yongsung2ORCID,Gerstoft Peter2ORCID,Seong Woojae13ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Seoul National University 1 , Seoul 08826, Republic of Korea

2. Scripps Institution of Oceanography, University of California San Diego 2 , La Jolla, California 92093-0238, USA

3. Research Institute of Marine Systems Engineering, Seoul National University 3 , Seoul 08826, Republic of Korea

Abstract

Ocean sound pressure field prediction, based on partially measured pressure magnitudes at different range-depths, is presented. Our proposed machine learning strategy employs a trained neural network with range-depth as input and outputs complex acoustic pressure at the location. We utilize a physics-informed neural network (PINN), fitting sampled data while considering the additional information provided by the partial differential equation (PDE) governing the ocean sound pressure field. In vast ocean environments with kilometer-scale ranges, pressure fields exhibit rapidly fluctuating phases, even at frequencies below 100 Hz, posing a challenge for neural networks to converge to accurate solutions. To address this, we utilize the envelope function from the parabolic-equation technique, fundamental in ocean sound propagation modeling. The envelope function shows slower variations across ranges, enabling PINNs to predict sound pressure in an ocean waveguide more effectively. Additional PDE information allows PINNs to capture PDE solutions even with a limited amount of training data, distinguishing them from purely data-driven machine learning approaches that require extensive datasets. Our approach is validated through simulations and using data from the SWellEx-96 experiment.

Funder

Korea Institute for Advancement of Technology

National Research Foundation of Korea

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3