Bottom water hypoxia suppresses fish chorusing in estuaries

Author:

Luczkovich Joseph J.1ORCID,Sprague Mark W.2ORCID,Paerl Hans W.3ORCID

Affiliation:

1. Department of Biology, East Carolina University 1 , Greenville, North Carolina 27858, USA

2. Department of Physics, East Carolina University 2 , Greenville, North Carolina 27858, USA

3. Institute of Marine Sciences, University of North Carolina 3 , Morehead City, North Carolina 28557, USA

Abstract

Hypoxia in coastal ecosystems is increasing as a result of water quality declines from nutrient pollution. Hypoxia negatively affects fish populations and marine life, limiting their spawning habitats, population size, and growth. In this study, two approaches were used to understand the effect of hypoxia on the chorusing and reproductive behavior of fishes in estuaries. One approach used a water quality meter integrated with a prototype passive acoustic recorder, developed to monitor dissolved oxygen and fish chorusing simultaneously and continuously at sites with normoxic and hypoxic conditions. In a second approach, passive acoustic recorders were deployed near ambient water quality monitoring stations, monitored by the North Carolina agencies in estuaries where hypoxia occurs periodically. In both approaches, when hypoxia (dissolved oxygen < 4.0 mg/L) occurred, fish chorusing was diminished or ceased. A strong correlation was observed between bottom water dissolved oxygen and the power spectral density in a 100–200 Hz frequency band associated with red drum (Sciaenops ocellatus, Sciaenidae) calling. Passive acoustic monitoring stations and integrated passive acoustic and water quality meters should be used in estuarine hypoxia monitoring efforts to examine the expanding areas of hypoxia and its impact on fish critical spawning habitats.

Funder

NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology

Publisher

Acoustical Society of America (ASA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the special issue on fish bioacoustics: Hearing and sound communication;The Journal of the Acoustical Society of America;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3