Systematic quantification of differences in shear wave elastography estimates between linear-elastic and viscoelastic material assumptions

Author:

Bisht Sapna R.1,Paul Abhijit1,Patel Panchami2,Thareja Prachi2,Mercado-Shekhar Karla P.1ORCID

Affiliation:

1. Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar 1 , Gandhinagar, Gujarat 382355, India

2. Department of Chemical Engineering, Indian Institute of Technology Gandhinagar 2 , Gandhinagar, Gujarat 382355, India

Abstract

Quantitative, accurate, and standardized metrics are important for reliable shear wave elastography (SWE)-based biomarkers. For over two decades, the linear-elastic material assumption has been employed in SWE modes. In recent years, viscoelasticity estimation methods have been adopted in a few clinical systems. The current study aims to systematically quantify differences in SWE estimates obtained using linear-elastic and viscoelastic material assumptions. An acousto-mechanical simulation framework of acoustic radiation force impulse-based SWE was created to elucidate the effect of material viscosity and shear modulus on SWE estimates. Shear modulus estimates exhibited errors up to 72% when a numerical viscoelastic phantom was assessed as linearly elastic. Shear modulus estimates of polyvinyl alcohol phantoms between rheometry and SWE following the Kelvin-Voigt viscoelastic model assumptions were not significantly different. However, the percentage difference in shear modulus estimates between rheometry and SWE using the linear-elastic assumption was 50.1%–62.1%. In ex vivo liver, the percentage difference in shear modulus estimates between linear-elastic and viscoelastic methods was 76.1%. These findings provide a direct and systematic quantification of the potential error introduced when viscoelastic tissues are imaged with SWE following the linear-elastic assumption. This work emphasizes the need to utilize viscoelasticity estimation methods for developing robust quantitative imaging biomarkers.

Funder

Gujarat State Biotechnology Mission, India

Science and Engineering Research Board, India

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3