Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy

Author:

Jia Yan1,Han Shuai1ORCID,Li Boyi1ORCID,Liu Chengcheng12ORCID,Ta Dean123ORCID

Affiliation:

1. Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University 1 , Shanghai, 200433, China

2. State Key Laboratory of Integrated Chips and Systems, Fudan University 2 , Shanghai, 201203, China

3. Department of Biomedical Engineering, School of Information Science and Technology, Fudan University 3 , Shanghai, 200438, China

Abstract

Recently, ultrasound transit time spectroscopy (UTTS) was proposed as a promising method for bone quantitative ultrasound measurement. Studies have showed that UTTS could estimate the bone volume fraction and other trabecular bone structure in ultrasonic through-transmission measurements. The goal of this study was to explore the feasibility of UTTS to be adapted in ultrasonic backscatter measurement and further evaluate the performance of backscattered ultrasound transit time spectrum (BS-UTTS) in the measurement of cancellous bone density and structure. First, taking ultrasonic attenuation into account, the concept of BS-UTTS was verified on ultrasonic backscatter signals simulated from a set of scatterers with different positions and intensities. Then, in vitro backscatter measurements were performed on 26 bovine cancellous bone specimens. After a logarithmic compression of the BS-UTTS, a linear fitting of the log-compressed BS-UTTS versus ultrasonic propagated distance was performed and the slope and intercept of the fitted line for BS-UTTS were determined. The associations between BS-UTTS parameters and cancellous bone features were analyzed using simple linear regression. The results showed that the BS-UTTS could make an accurate deconvolution of the backscatter signal and predict the position and intensity of the simulated scatterers eliminating phase interference, even the simulated backscatter signal was with a relatively low signal-to-noise ratio. With varied positions and intensities of the scatterers, the slope of the fitted line for the log-compressed BS-UTTS versus ultrasonic propagated distance (i.e., slope of BS-UTTS for short) yield a high agreement (r2 = 99.84%–99.96%) with ultrasonic attenuation in simulated backscatter signal. Compared with the high-density cancellous bone, the low-density specimen showed more abundant backscatter impulse response in the BS-UTTS. The slope of BS-UTTS yield a significant correlation with bone mineral density (r = 0.87; p < 0.001), BV/TV (r = 0.87; p < 0.001), and cancellous bone microstructures (r up to 0.87; p < 0.05). The intercept of BS-UTTS was also significantly correlated with bone densities (r = –0.87; p < 0.001) and trabecular structures (|r|=0.43–0.80; p < 0.05). However, the slope of the BS-UTTS underestimated attenuation when measurements were performed experimentally. In addition, a significant non-linear relationship was observed between the measured attenuation and the attenuation estimated by the slope of the BS-UTTS. This study demonstrated that the UTTS method could be adapted to ultrasonic backscatter measurement of cancellous bone. The derived slope and intercept of BS-UTTS could be used in the measurement of bone density and microstructure. The backscattered ultrasound transit time spectroscopy might have potential in the diagnosis of osteoporosis in the clinic.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3