Feature selection for a continental-scale geospatial model of environmental sound levels

Author:

Pedersen Katrina1ORCID,Transtrum Mark K.1,Gee Kent L.1ORCID,Lympany Shane V.2,James Michael M.2,Salton Alexandria R.2

Affiliation:

1. Physics and Astronomy, Brigham Young University 1 , Provo, Utah 84602, USA

2. Blue Ridge Research and Consulting, LLC 2 , Asheville, North Carolina 28801, USA

Abstract

Modeling environmental sound levels over continental scales is difficult due to the variety of geospatial environments. Moreover, current continental-scale models depend upon machine learning and therefore face additional challenges due to limited acoustic training data. In previous work, an ensemble of machine learning models was used to predict environmental sound levels in the contiguous United States using a training set composed of 51 geospatial layers (downselected from 120) and acoustic data from 496 geographic sites from Pedersen, Transtrum, Gee, Lympany, James, and Salton [JASA Express Lett. 1(12), 122401 (2021)]. In this paper, the downselection process, which is based on factors such as data quality and inter-feature correlations, is described in further detail. To investigate additional dimensionality reduction, four different feature selection methods are applied to the 51 layers. Leave-one-out median absolute deviation cross-validation errors suggest that the number of geospatial features can be reduced to 15 without significant degradation of the model's predictive error. However, ensemble predictions demonstrate that feature selection results are sensitive to variations in details of the problem formulation and, therefore, should elicit some skepticism. These results suggest that more sophisticated dimensionality reduction techniques are necessary for problems with limited training data and different training and testing distributions.

Funder

Small Business Innovation Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3