A personal account of work on anatomy, physiology, and behavior of fish sound production

Author:

Fine Michael L.1ORCID

Affiliation:

1. Department of Biology, Virginia Commonwealth University , Richmond, Virginia 23284, USA

Abstract

My research has been devoted to neuromuscular control of sound production in toadfish, catfish, and other species along with an occasional foray into hearing. Toadfish utilize a heart shaped swim bladder and superfast muscles with small fibers and an unusual ultrastructure. Both sonic motor neurons and muscle fibers increase in size and number for multiple years, and large muscle fibers fragment and likely divide, maintaining energetic efficiency. Toadfish sonic muscles drive the swim bladder directly (a forced response), and the sound waveform parallels bladder movement. The forced response differs from traditional interpretations of swim bladders as underwater resonant bubbles. High water content in the swim bladder wall inhibits resonance by viscous damping at shallow but likely less effectively at deeper depths, suggesting both notions might apply. Catfish produce sounds with their pectoral spines by rubbing a ridged surface on the dorsal process against a rough surface on the cleithrum: a series of quick jerks produce sounds via a slip-stick mechanism. Recent discoveries on other species reveal novel adaptations for sound production and suggestions are made for future work.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3