Acousto-optic holography

Author:

Verburg Samuel A.1ORCID,Williams Earl G.2,Fernandez-Grande Efren1

Affiliation:

1. Acoustic Technology, Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, 2800 Kongens Lyngby, Denmark

2. United States Naval Research Laboratory, Code 7106, Washington, DC 20375, USA

Abstract

Acousto-optic sensing is based on the interaction between sound and light: pressure waves induce density variations, which, in turn, alter the way light propagates in air. Pressure fields are, thus, characterized by measuring changes in light propagation induced by pressure waves. Although acousto-optic sensing provides a way of acquiring acoustic information noninvasively, its widespread application has been hindered by the use of reconstruction methods ill-suited for representing acoustic fields. In this study, an acousto-optic holography method is proposed in which the sound pressure in the near field of a source is captured via acousto-optic sensing. The acousto-optic measurements are expanded into propagating and evanescent waves, as in near-field acoustic holography, making it possible to completely characterize the radiated field noninvasively. An algebraic formulation of the wave expansion enables the use of arbitrary sets of projections. The proposed method is demonstrated experimentally by capturing the acoustic field radiated by a vibrating plate. Accurate holographic reconstructions of the pressure, particle velocity, and intensity fields are obtained using purely optical data. These results are particularly significant for the study of sound fields at mid and high frequencies, where using conventional transducers could perturb the measured field and spatial sampling requirements are challenging.

Funder

Villum Fonden

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3