Experimental investigation on the enhancement of plenum window noise reduction using solid scatterers

Author:

Li Xiao-Long1,Lam Wai Kit2,Tang S. K.3ORCID

Affiliation:

1. Faculty of Architecture and Urban Planning, Chongqing University 1 , Chongqing, China

2. Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University 2 , Hong Kong, China

3. School of Engineering, The University of Hull 3 , Hull HU6 7RX, United Kingdom

Abstract

The sound transmission across plenum windows installed with rigid non-resonant cylindrical scatterer arrays was investigated in detail using scale-down model measurements carried out inside a fully anechoic chamber. The arrays have manifested to some extent the acoustical behaviors of virtual sonic crystals. The maximum cross section blockage ratio was 0.6. The effects of plenum window gap, array configuration, and scatterer diameter on the sound transmission characteristics were also examined. Results indicate that the window cavity longitudinal modes and the gap modes control the sound transmission characteristics at low frequencies. The upper bound of this frequency range increases with decreasing gap width. Within this frequency range, the scatterers have negligible effect on the sound transmission. At higher frequencies, the array configurations with scatterer(s) attached to the window walls result in stronger sound reduction. There are relatively higher sound transmission loss improvements around the frequencies where a full bandgap is observed. There are wide bandgaps in various lattice directions, and the present results suggest that they play a role in the broadband improvement of sound reduction.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3