Stimulus-frequency otoacoustic emissions and middle-ear pressure gains in a finite-element mouse model

Author:

Motallebzadeh Hamid1ORCID,Puria Sunil1ORCID

Affiliation:

1. Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA

Abstract

For evoked otoacoustic emissions (OAEs), the stimulus and emission signals traverse the middle ear (ME) in forward and reverse directions, respectively. In this study, a fully coupled three-dimensional finite-element model of the mouse ear canal (EC), ME, and cochlea was used to calculate ME pressure gains, impedances, and reflectances at the EC-entrance and stapes-footplate–cochlear-fluid interfaces. The cochlear model incorporates a series of interdigitated Y-shaped structures sandwiched between the basilar membrane and reticular lamina, each comprised of a Deiters' cell, its phalangeal-process extension, and an outer hair cell (OHC). By introducing random perturbations to the OHC gains, stimulation-frequency otoacoustic emissions (SFOAEs) were generated. Raising the perturbation magnitude from 10% to 80% increased the SFOAE magnitude by up to 24 dB in the 10–30 kHz frequency range. Increasing or decreasing the stiffness of the stapes annular ligament and eardrum by a factor of 8 changed the SFOAEs by up to 30 dB, but the round-trip ME gain as measured could not account for this. A modified round-trip ME gain, with reflections removed at the EC-entrance and stapes–cochlea boundaries, eliminated a ±10 dB discrepancy and allowed ME changes to be quantitatively associated with changes in measured OAEs.

Funder

National Institute on Deafness and Other Communication Disorders

Amelia Peabody Charitable Fund

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3