Multi-modal thermoacoustic instability suppression via locally resonant and Bragg bandgaps

Author:

Liu Yang1,Cheng Li2ORCID,Du Jingtao1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

2. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong

Abstract

Thermoacoustic instability is a common occurrence in combustors, yielding self-sustained oscillations and causing potential risk, such as severe structural damage. In this paper, modal instability suppression inside a duct is studied using periodically arranged membranes within the framework of a linear heat release n- τ model embedded into a fully coupled energy-based model. The periodic arrangement of the membranes along the duct sidewall enables locally resonant and Bragg scattering bandgaps, shown to be conducive for the stabilization of unstable thermoacoustic modes. Eigen-modes are classified into different groups, which call for specific control actions in relation with the bandgap frequencies. While multi-modal instability control of low-order modes can be achieved through the tuning of the resonant bandgaps, the densely packed modal cluster, regrouping modes featuring similar mode shapes, requires proper adjustment of the flame position for avoiding modal instability. Compared with the Bragg bandgaps, locally resonant bandgaps, which should be formed near the unstable modes even without stringent periodicity, are shown to play a decisive role in the control process. Meanwhile, strict periodicity is not necessary for the proposed control strategy, showing the practicability of the proposed control strategy. The study shows a promising route to achieve simultaneous suppression of multi-modal instability.

Funder

National Natural Science Foundation of China

Research Grant Council of the Hong Kong SAR

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3