Data-driven local average room transfer function estimation for multi-point equalization

Author:

Tuna Cagdas1ORCID,Zevering Annika1,Prinn Albert G.1ORCID,Götz Philipp2,Walther Andreas1,Habets Emanuël A. P.2ORCID

Affiliation:

1. Fraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33, 91058 Erlangen, Germany

2. International Audio Laboratories Erlangen, Am Wolfsmantel 33, 91058 Erlangen, Germany

Abstract

Multi-point room equalization (EQ) aims to achieve a desired sound quality within a wider listening area than single-point EQ. However, multi-point EQ necessitates the measurement of multiple room impulse responses at a listener position, which may be a laborious task for an end-user. This article presents a data-driven method that estimates a spatially averaged room transfer function (RTF) from a single-point RTF in the low-frequency region. A deep neural network (DNN) is trained using only simulated RTFs and tested with both simulated and measured RTFs. It is demonstrated that the DNN learns a spatial smoothing operation: notches across the spectrum are smoothed out while the peaks of the single-point RTF are preserved. An EQ framework based on a finite impulse response filter is used to evaluate the room EQ performance. The results show that while not fully reaching the level of multi-point EQ performance, the proposed data-driven local average RTF estimation method generally brings improvement over single-point EQ.

Funder

Free State of Bavaria in the DSAI project

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3