Affiliation:
1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
Abstract
Pressurized water supply pipeline systems (PWSPS) are quintessential to human development and sustenance, but suffer a multitude of unresolved defects (i.e., leaks, blockages, etc.) due to aging and inaccessibility. In this paper, the ubiquitous high-frequency background noise in PWSPS is harnessed to introduce a high-resolution, passive defect detection technique. The relation between the acoustic Green's and cross correlation functions for a pressurized water pipe is derived for the case of high frequency waves, i.e., acoustic wavelengths smaller than the pipe diameter. This relation is subsequently used to formulate a time-reversal technique for localizing anomalies such as small variations in pipe wall impedance and through-wall defects (i.e., leaks). It is shown that the derived relationship between the cross correlation and acoustic Green's functions enables very accurate defect detection and localization by measuring the background noise at two locations along a pipe. This is an important result given that (i) there is limited access to buried PWSPS to conduct high-frequency active defect detection, and (ii) traditional methods to actively probe pipes (e.g., valve maneuverer) are low-resolution (tens to hundreds of meters) and often result in pipe overloading and fatigue.
Publisher
Acoustical Society of America (ASA)
Subject
Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献