Numerical modeling of the impacts of acoustic stimulus on fish otoliths from two directions

Author:

Wei Chong1ORCID,McCauley Robert D.1

Affiliation:

1. Centre for Marine Science and Technology, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia

Abstract

Previous experiments have shown (1) evidence that exposure to high-intensity sounds (e.g., air-gun signals) may cause damage to the sensory hair cells of the fish ears and impair fish hearing and (2) evidence that in some circumstances such exposures cause minimal structural damage. The contradictory results regarding the damage accrued suggested that the angle of sound energy arrivals at the fish ears may play a part in the propensity of the sound to cause damage to sensory hair cells. To further study this and gain insight into specific details of the differential motion of the otolith relative to the sensory macula when incident sounds arrive from different directions, three-dimensional finite element models were constructed based on the micro-computed tomography imaging of the sagittal otoliths of the bight redfish ( Centroberyx gerrardi). We used the models to study the response of fish sagittal otoliths to sounds arriving from horizontal and vertical directions. Sound pressure levels, relative displacement, acceleration, and shear stress of the otoliths and/or otolith-water boundary were calculated and compared. The results suggest that the angle of sound energy arrivals at the otoliths and the geometry of the otolith lead to different magnitudes of the differential motion between the macula and otoliths, with sound arriving in the vertical potentially creating more damage than the same sound arriving from the horizontal.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3