Sound source classification for soundscape analysis using fast third-octave bands data from an urban acoustic sensor network

Author:

Tailleur Modan1ORCID,Aumond Pierre2ORCID,Lagrange Mathieu1ORCID,Tourre Vincent3ORCID

Affiliation:

1. Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004 1 , Nantes, F-44000, France

2. Univ Gustave Eiffel, CEREMA, UMRAE 2 , Bouguenais, F-44344, France

3. Nantes Université, École Centrale Nantes, CNRS, AAU, UMR 1563 3 , Nantes, F-44000, France

Abstract

The exploration of the soundscape relies strongly on the characterization of the sound sources in the sound environment. Novel sound source classifiers, called pre-trained audio neural networks (PANNs), are capable of predicting the presence of more than 500 diverse sound sources. Nevertheless, PANNs models use fine Mel spectro-temporal representations as input, whereas sensors of an urban noise monitoring network often record fast third-octaves data, which have significantly lower spectro-temporal resolution. In a previous study, we developed a transcoder to transform fast third-octaves into the fine Mel spectro-temporal representation used as input of PANNs. In this paper, we demonstrate that employing PANNs with fast third-octaves data, processed through this transcoder, does not strongly degrade the classifier's performance in predicting the perceived time of presence of sound sources. Through a qualitative analysis of a large-scale fast third-octave dataset, we also illustrate the potential of this tool in opening new perspectives and applications for monitoring the soundscapes of cities.

Publisher

Acoustical Society of America (ASA)

Reference38 articles.

1. Soundscape descriptors and a conceptual framework for developing predictive soundscape models;Landsc. Urban Plan.,2016

2. A high density network of low cost acoustic sensors based on wired and airborne transmission of spectral data,2021

3. Modeling soundscape pleasantness using perceptual assessments and acoustic measurements along paths in urban context;Acta Acust. united Acust.,2017

4. A principal components model of soundscape perception;J. Acoust. Soc. Am.,2010

5. Environmental sound classification: A descriptive review of the literature;Intell. Syst. Appl.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3