Attenuation and distortion components of age-related hearing loss: Contributions to recognizing temporal-envelope filtered speech in modulated noise

Author:

Fogerty Daniel1ORCID,Ahlstrom Jayne B.2,Dubno Judy R.2ORCID

Affiliation:

1. Department of Speech and Hearing Science, University of Illinois Urbana-Champaign 1 , Champaign, Illinois 61820, USA

2. Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina 2 , Charleston, South Carolina 29425, USA

Abstract

Older adults with hearing loss may experience difficulty recognizing speech in noise due to factors related to attenuation (e.g., reduced audibility and sensation levels, SLs) and distortion (e.g., reduced temporal fine structure, TFS, processing). Furthermore, speech recognition may improve when the amplitude modulation spectrum of the speech and masker are non-overlapping. The current study investigated this by filtering the amplitude modulation spectrum into different modulation rates for speech and speech-modulated noise. The modulation depth of the noise was manipulated to vary the SL of speech glimpses. Younger adults with normal hearing and older adults with normal or impaired hearing listened to natural speech or speech vocoded to degrade TFS cues. Control groups of younger adults were tested on all conditions with spectrally shaped speech and threshold matching noise, which reduced audibility to match that of the older hearing-impaired group. All groups benefitted from increased masker modulation depth and preservation of syllabic-rate speech modulations. Older adults with hearing loss had reduced speech recognition across all conditions. This was explained by factors related to attenuation, due to reduced SLs, and distortion, due to reduced TFS processing, which resulted in poorer auditory processing of speech cues during the dips of the masker.

Funder

National Institute on Deafness and Other Communication Disorders

National Center for Research Resources

National Center for Advancing Translational Sciences

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3