Modeling and interpretation of bistatic bottom reverberation in deep water near seamounts

Author:

Guo Yue1,Duan Rui1ORCID,Zhang Hao1,Yang Kunde1,Liu Tianhe1,Gong Guangyu1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University , Xi'an, Shaanxi 710072, China

Abstract

The received reverberation signal can be beamformed by utilizing a vertical array, generating a vertical-angle time record (VATR) that enables analysis of spatiotemporal distribution characteristics. Due to the influence of multipath propagation effects, deep-sea reverberation exhibits highly complex characteristics, especially in a seabed with significant depth variation. In a recent bistatic reverberation experiment with a vertical array receiver, peculiar bright stripes were observed in the VATR. These stripes are the result of scattering caused by large-scale bottom structures and are closely associated with seamounts. To accurately model and interpret these stripes, a bistatic reverberation model is initially established to reproduce the VATR. This model enables us to numerically simulate the spatiotemporal distribution of reverberation in the VATR, offering a qualitative explanation for these stripes. However, the model alone is incapable of predicting the specific stripe structure associated with a particular seamount. To address this limitation, an equation system is introduced to calculate the stripe parameters based on the seamount parameters. By analyzing and deducing the dependency of the stripes on the seamount, conclusions were drawn using the equation system. Ultimately, the presented model and equation system successfully reproduce and comprehensively explain the observed abnormal stripes from the experiment.

Funder

National Natural Science Foundation of China

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3