Upper density of monochromatic infinite paths

Author:

Corsten Jan,DeBiasio Louis1,Lamaison Ander,Lang Richard

Affiliation:

1. Miami University (OH)

Abstract

Ramsey Theory investigates the existence of large monochromatic substructures. Unlike the most classical case of monochromatic complete subgraphs, the maximum guaranteed length of a monochromatic path in a two-edge-colored complete graph is well-understood. Gerencsér and Gyárfás in 1967 showed that any two-edge-coloring of a complete graph Kn contains a monochromatic path with ⌊2n/3⌋+1 vertices. The following two-edge-coloring shows that this is the best possible: partition the vertices of Kn into two sets A and B such that |A|=⌊n/3⌋ and |B|=⌈2n/3⌉, and color the edges between A and B red and edges inside each of the sets blue. The longest red path has 2|A|+1 vertices and the longest blue path has |B| vertices. The main result of this paper concerns the corresponding problem for countably infinite graphs. To measure the size of a monochromatic subgraph, we associate the vertices with positive integers and consider the lower and the upper density of the vertex set of a monochromatic subgraph. The upper density of a subset A of positive integers is the limit superior of |A∩{1,...,}|/n, and the lower density is the limit inferior. The following example shows that there need not exist a monochromatic path with positive upper density such that its vertices form an increasing sequence: an edge joining vertices i and j is colored red if ⌊log2i⌋≠⌊log2j⌋, and blue otherwise. In particular, the coloring yields blue cliques with 1, 2, 4, 8, etc., vertices mutually joined by red edges. Likewise, there are constructions of two-edge-colorings such that the lower density of every monochromatic path is zero. A result of Rado from the 1970's asserts that the vertices of any k-edge-colored countably infinite complete graph can be covered by k monochromatic paths. For a two-edge-colored complete graph on the positive integers, this implies the existence of a monochromatic path with upper density at least 1/2. In 1993, Erdős and Galvin raised the problem of determining the largest c such that every two-edge-coloring of the complete graph on the positive integers contains a monochromatic path with upper density at least c. The authors solve this 25-year-old problem by showing that c=(12+8–√)/17≈0.87226.

Publisher

Alliance of Diamond Open Access Journals

Subject

Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unavoidable structures in infinite tournaments;Proceedings of the American Mathematical Society;2024-08-07

2. Ramsey upper density of infinite graphs;Combinatorics, Probability and Computing;2023-04-25

3. Ramsey upper density of infinite graph factors;Illinois Journal of Mathematics;2023-04-01

4. Covering 2‐colored complete digraphs by monochromatic d $d$‐dominating digraphs;Journal of Graph Theory;2022-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3